Nucleophile und oxidative Addition von S-R-Bausteinen an Heterometallacumulene

Frank Ettel, Martin Schollenberger, Berthold Schiemenz, Wolfgang Imhof, Gottfried Huttner und Laszlo Zsolnai

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Deutschland) (Eingegangen den 8. November 1993)

Abstract

The dimetallaplumbacumulene complex $[Cp'(CO)_2Mn=Pb=Mn(CO)_2Cp']$ (1) reacts with NaSMes to give the product of an oxidative addition process $[\{Cp'(CO)_2Mn\}Pb(SMes)_3]^-$ (A4). The "inidene" compound $[\{Cp'(CO)_2Mn\}Pb(SMes)_3]^-$ (A3), which is an intermediate in this reaction, has not been isolated. The analogous tin compound $[\{Cp'(CO)_2Mn\}Pb(SMes)_3]^-$ (A1) has been obtained from the reaction of $[Cp'(CO)_2Mn=Sn=Mn(CO)_2Cp']$ (10) with LiS^tButyl. The structures of the (Na 2,2,2-Crypt.) salt 4 of A4 and of the (Lithium 2,1,1-Crypt.) salt 12 of the anion A12 have been determined by X-ray methods.

Zusammenfassung

Der Dimetallaplumbacumulenkomplex $[Cp'(CO)_2Mn=Pb=Mn(CO)_2Cp']$ (1) reagiert mit NaSMes zu $[Cp'(CO)_2Mn]Pb(SMes)_3]^-$ (A4), dem Produkt eines oxidativen Additionsprozesses. Die bei dieser Reaktion intermediär auftretende "Iniden"-Verbindung $[Cp'(CO)_2Mn]_2Pb(SMes)]^-$ (A3) konnte nicht isoliert werden. Die analoge Zinn-Verbindung $[Cp'(CO)_2Mn]_2Sn(S'Butyl)]^-$ (A12) wird bei der Umsetzung von $[Cp'(CO)_2Mn=Sn=Mn(CO)_2Cp']$ (10) mit LiS'Butyl erhalten. Von dem (Na 2,2,2-Crypt.)-Salz 4 von A4 sowie von dem (Lithium 2,1,1-Crypt.)-Salz 12 des Anions A12 wurden die Strukturen durch Röntgenbeugungsanalyse bestimmt.

Key words: Manganese; Sulfur; Tin; Lead

1. Einleitung

"Iniden"-Verbindungen [1] des Typs $[\{L_nM\}_2E$ (XR)]^p (X = S, Se; R = ^tButyl, Phenyl, Mesityl; L_nM = 16e⁻-Fragment z.B. Cp'(CO)₂Mn (Cp' = η^5 -C₅H₄ CH₃); E = Pb [2], p = -1; E = As [3], p = 0) können durch Addition der entsprechenden anionischen Nucleophile XR⁻ an Metallaheterocumulene [$\{L_nM\}_2E$]^q (z.B. E = Pb [2,4], q = 0) gebildet werden. Ein weiteres Syntheseprinzip zur Darstellung der "Iniden"-Verbindungen [$\{L_nM\}_2E(XR)$]^p (s.o.) ist die nucleophile Substitution der Liganden Y⁻ in "Iniden"-Komplexen [$\{L_nM\}_2E(Y)$]^p (z.B. Y = Cl, E = As [3], p = 0) durch XR⁻ (Gl. 1). In einigen Fällen können die dabei gebildeten "Iniden"-Verbindungen nicht isoliert werden, da sie unter Oxidation der Zentralelemente E zu [{L_nM} $E(XR)_3$]^p (z.B. E = Sn [5], p = -1; E = Sb [6], p = 0) weiterreagieren (oxidative "Addition") (Gl. 2).

Wir berichten hier über die Umsetzung des Cumulenkomplexes $[Cp'(CO)_2Mn=Pb=Mn(CO)_2Cp']$ (1) [2,4] mit NaSMes. Dabei kann das Produkt der oxidativen "Addition" $[\{Cp'(CO)_2Mn\}Pb(SMes)_3]^-$ (A4) [7*] als (Na 2,2,2-Crypt.)-Salz (4) erhalten werden. Bei der Reaktion des Stannacumulens $[Cp'(CO)_2Mn=Sn=Mn$ (CO)₂Cp'] (10) mit LiS'Butyl gelingt es, den "Iniden"-Komplex $[\{Cp'(CO)_2Mn\}Sn(S'Butyl)]^-$ (A12) [7*] - das Reaktionsprodukt einer nucleophilen Addition - als (Lithium 2,1,1-Crypt.)-Salz (12) in Substanz zu isolieren. Beide Produkte (4 und 12) wurden IR-spektroskopisch

Correspondence to: Prof. Dr. Gottfried Huttner.

und röntgenstrukturanalytisch zweifelsfrei charakterisiert.

2. Ergebnisse und Diskussion

Der Dimanganaplumbacumulenkomplex [{Cp' $(CO)_2Mn\}_2Pb$] (1) [2,4] reagiert mit LiS^tButyl unter Bildung der anionischen "Iniden"-Verbindung [{Cp' $(CO)_2Mn\}_2Pb(S^tButyl)$]⁻ (A2) [2,7*] (Gl. 3).

Wird 1 anstelle von LiSt Butyl mit NaSMes umge-

setzt, so kann der intermediär entstandene, IRspektroskopisch nachgewiesene (siehe Experimenteller Teil) "Iniden"-Komplex [{Cp'(CO)₂Mn}₂Pb(SMes)]⁻ (A3) [7*] aufgrund seiner großen Empfindlichkeit nicht isoliert werden [8*]. A3 reagiert unter Oxidation des Blei-Zentralelementes (Pb(0) \rightarrow Pb(II)) zu [{Cp'(CO)₂ Mn}Pb(SMes)₃]⁻ (A4) [7*] (Gl. 4).

Die Identität von A4 wurde an (Na 2,2,2-Crypt.)-Salz (4) [7*] IR-spektroskopisch und durch eine Röntgenstrukturanalyse (Abb. 1, Tabelle 1) gesichert [9*].

Die Pb-S-Bindungslängen in 4, die innerhalb der Fehlergrenzen identisch sind (Mittelwert: 260.3 pm), sind kürzer als die Bindungsabstände, die in anderen Komplexen für entsprechende Einfachbindungen ge-

^{*} Die Literaturnummern mit einem Sternchen deuten eine Bemerkung in der Literaturliste an.

Abb. 1. Struktur des Anions [{Cp'(CO)₂Mn}Pb(SMes)₃]⁻ (A4) [7*,9*] im Kristall.

TABELLE 1. Ausgewählte Abstände (pm) und Winkel (°) des Anions A4 im Salz (Na 2,2,2-Crypt.){ $Cp'(CO)_2Mn$ }Pb(SMes)₃] (4) (Z = Mittelpunkt des Cp'-Ringes)

Abstände			
Pb-Mn1	261.7(3)	Pb-S2	259.4(6)
Pb–S1	260.1(7)	Pb-S3	261.3(6)
Mn-C _{CO}	177(3) u. 179(2)	[178 ^M]	
Mn-C _{Cp}	209(2)-221(2)	[215.0 ^M]	
Winkel			
Mn1–Pb–S1	120.0(1)	S1-Pb-S2	95.4(2)
Mn1-Pb-S2	129.3(2)	S2-Pb-S3	88.7(2)
Mn1-Pb-S3	118.2(1)	S3-Pb-S1	97.2(2)
Pb-Mn1-C10	93.6(8)	Pb-S1-C6	102.4(5)
Pb-Mn1-C11	94.8(8)	Pb-S2-C17	102.8(5)
Pb-Mn1-Z	119.3	Pb-S3-C26	102.2(6)
Torsionswinkel			
C6-S1-Pb-Mn1	- 3.0	S1-Pb-Mn1-Z	63.5
C17-S2-Pb-Mn1	- 70.0	S2-Pb-Mn1-Z	- 168.7
C26-S3-Pb-Mn1	-14.2	S3-Pb-Mn1-Z	- 54.8
M			

^M Mittelwert

funden werden [10]. Die Länge der Pb-Mn-Bindung (261.7(3) pm) ist gegenüber den Pb-Mn-Doppelbindungslängen der Cumulenausgangsverbindung 1 (246 pm [2]) deutlich aufgeweitet. Das zentrale Bleiatom ist dabei verzerrt tetraedrisch koordiniert (Abb. 1, Tabelle 1 [9*]). Die Struktur des Pb,Mn,S₃-Gerüstes in 4 entspricht in etwa dem Muster, das für die homologe Zinnverbindung [{Cp'(CO)₂Mn}Sn(SMes)₃]⁻ (A11) [5,7*] beobachtet wird. Ein angenähert spiegelsymmetrischer Bau wie in Verbindung [{Cp'(CO)₂Mn}Sb(S-Ph)₃] (6) [6] oder eine, idealisiert betrachtet, dreizählige Symmetrie der Mn-Pb-(S^tButyl)₃-Einheit entsprechend der Mn-As-(SePh)₃-Einheit in [{Cp'(CO)₂Mn}-As(SePh)₃] (9a) [3] wird nicht beobachtet.

Die im Vergleich zur Reaktion von $A3 \rightarrow A4$ analoge Oxidation des Zentralelementes eines "Iniden"-Komplexes wurde bei der Synthese von [{Cp'(CO)₂-Mn}Sb(SPh)₃] (6) aus [{Cp'(CO)₂Mn}₂SbI] (5) erstmals beschrieben [6] (Gl. 5).

Gleichung 4.

Daß der Reaktionsmechanismus bei der oxidativen "Addition" von 5 nicht trivial ist, zeigt hier die Bildung des Radikalkomplexes [Cp'(CO)₂MnSPh] [6]. Das Reaktionsverhalten von "Iniden"-Komplexen bezüglich einer nucleophilen oder oxidativen Addition wurde daher am Beispiel von [{Cp'(CO)₂Mn}₂AsCl] (7) genauer untersucht [3]. Auch hier wird das Radikal [Cp'(CO)₂MnXPh][•] [6] (X = S, Se) beobachtet [3] (Gl. 6).

Hauptargument für die oxidative Addition von 8 ist dabei die Anwesenheit von Protonen $(8 + {H^+} \rightarrow 9)$ [3]!

Ein Synthesekonzept zur Herstellung eines $[{L_nM}_2$ -Sn(SR)]⁻ "Iniden"-Komplexes ($L_nM = 16$ e⁻-Fragment) war die nucleophile Addition von NaSMes an das Stannacumulen $[{Cp'(CO)_2Mn}_2Sn]$ (10) [5]. Die große Empfindlichkeit der Zinnverbindung 10 verhinderte bislang ihre Isolierung in Substanz; das entsprechende Cp*-Derivat ist hingegen bekannt [11]. Durch Umsetzung von Na[{Cp'(CO)₂Mn}₂H] [12] mit SnCl₂ in THF bei -30° C können jedoch rotbraune Lösungen erhalten werden, in denen 10 enthalten ist [5,13], das mit NaSMes, entsprechend dem Reaktionsverhalten des Plumbacumulens 1 mit SMes (s.o.), jedoch ausschließlich zu [{Cp'(CO)₂Mn}Sn(SMes)₃]⁻ (A11) [5,7^{*}], dem Produkt eines oxidativen Additionsprozesses, reagiert.

Die Synthese eines "Iniden"-Komplexes $[\{L_nM\}_2Sn (SR)]^-$ erfordert offenbar die Wahl eines geeigneten Restes R und eines geeigneten Kations, welche auch beim Arbeiten bei tiefen Temperaturen eine rasche Kristallisation [8*] ermöglichen. So kann bei der Umsetzung von 10 mit LiS'Butyl erstmals ein "Iniden"-Komplex $[\{L_nM\}_2Sn(SR)]^-$ in Form von $[\{Cp'(CO)_2-Mn\}_2Sn(S'Butyl)]^-$ (A12) [7*] isoliert werden. Im Unterschied zu dem Produkt einer oxidativen "Addition"

Gleichung 5.

Das Endprodukt dieser Reaktion ist noch nicht vollständig charakterisiert. IR-spektroskopische Untersuchungen (THF Lösung, $\nu(CO) = 1908vs$, 1847vs cm⁻¹) weisen auf die Oxidation von 12 unter Bildung des salzartigen Komplexes (Li 2,1,1-Crypt.) [{Cp'(CO)₂-Mn}Sn(S'Butyl)₃] hin.

Das Anion A12 zeigt die für "Iniden"-Verbindungen typische trigonal-planare Koordination des Haupt-

Gleichung 6.

A11 [5] (R = SMes, Na(2,2,2-Crypt.)⁺ als Kation, Kristallisationsdauer 4–5 Tage bei 20°C) kristallisiert A12 (R = ^tButyl) unter Zugabe von $C_{14}H_{28}N_2O_4$ (2,1,1-Crypt.) als (Lithium 2,1,1-Crypt.)[{Cp'(CO)_2-Mn}_2Sn(S'Butyl)]-Salz (12) bei + 4°C schon innerhalb von 2 Tagen [9*] (Gl. 7).

Diese relativ kurze Kristallisationszeit ist wichtig, da Lösungen von 12 instabil sind und weiterreagieren.

Gleichung 7.

Abb. 2. Struktur des Anions [{Cp'(CO)₂Mn}₂Sn(S^tButyl)]⁻ (A12) [7*,9*] im Kristall.

gruppenzentrums [1] (Abb. 2, Tabelle 2 [9*]), wie sie z.B. auch beim homologen Blei-"Iniden"-Komplexanion [{Cp'(CO)₂Mn}₂Pb(S'Butyl)]⁻ (A2) [2,7*] beobachtet wurde.

TABELLE 2. Ausgewählte Abstände (pm) und Winkel (°) des Anions A12 im Salz (Lithium 2,1,1-Crypt.)[{Cp'(CO)₂Mn}₂Sn(S^tButyl)] (12) (Z1, Z2 = Mittelpunkte der Cp'-Ringe am Mn1 bzw. Mn2 Atom)

Abstände			
Sn-Mn1	252.1(2)	Sn–S	247.4(3)
Sn-Mn2	250.5(3)	S-C17	184.7(5)
Mn1-C _{CO}	176.2(5) und	Mn2-C _{CO}	176.5(5) und
~~	177.0(2)		177.2(2)
$Mn1-C_{Cn}$	214.9(4)-	Mn2-C _{Cp}	214.3(5)-
- CP	215.5(4)	-•	216.0(4)
Winkel			
Mn1-Sn-Mn2	134.4(1)	Mn2-Sn-S	124.4(1)
Mn1-Sn-S	101.1(1)	Sn-S-C17	121.4(2)
Torsionswinkel			
Z1-Mn1-Mn2-Z2	159.4	Mn1-Sn-S-C17	179.3
Z1-Mn1-Sn-S	-10.3	Mn2-Sn-S-C17	- 3.5
Z2-Mn2-Sn-S	173.0		

Der mittlere Sn-Mn-Abstand in A12 (251.3 pm) ist länger als die Sn-Mn-Bindungslängen in den "Iniden"-Komplexen [{Cp'(CO)₂Mn}₂Sn(Hal)]⁻ (A13) [5,7*] (Hal = Cl, 246.2(2); Br, 249.2(3); I, 249.4(2) pm); er stimmt jedoch gut mit der Länge der Sn-Mn-Bindungen der Sn(II)-Verbindung [{Cp'(CO)₂Mn}Sn(S-Mes)₃]⁻ (A11) [5,7*] (Mittelwert: 251.1 pm [14*]) überein. Der Bindungswinkel in A12 (134.4(1)°) ist im Vergleich zur linearen Cumulenausgangsverbindung 10 (ungefähr, 180°) [5,13] stärker abgewinkelt als die entsprechenden Winkel in A13 [5] (Hal = Cl, 142.6(1); Br, 140.0(1); I, 140.6(1)°).

Für eine π -Wechselwirkung zwischen dem Schwefelatom und dem Mn \dots Sn \dots Mn- π -System in A12 spricht die Orientierung des S^tButyl-Restes: Das S-Atom ist offensichtlich sp²-hybridisiert. Der Sn-S-C17-Bindungswinkel entspricht nahezu 120° (121.4(2)°) (Tabelle 2) und die maximale Abweichung von der besten Ebene durch die beiden Mn-Atome, das Zinnatom, das S-Atom des S^tButyl-Substituenten und das ipso C-Atom am 'Butyl-Rest (C17) beträgt nur 2.8 pm. Diese π -Konjungation macht die ungewöhnliche und sterisch ungünstige Stellung des 'Butyl-Substituenten in A12 verständlich (Abb. 2). Die sterische Belastung im Molekül wird aus der Tatsache deutlich, daß die S-Sn-Mn-Winkel verschieden sind (Tabelle 2). Aufgrund der Abstoßung zwischen dem 'Butyl-Rest und dem benachbarten Cp'(CO)₂Mn2-Fragment entsteht im Molekül ein sterischer Druck, dem es durch Deformation der Bindungswinkel ausweicht. Der S-Sn-Mn2-Winkel (124.4(2)°) ist daher gegenüber dem S-Sn-Mn1-Winkel (101.1(1)°) stark aufgeweitet (Abb. 2, Tabelle 2).

Ein Vergleich der Sn–S-Bindungslänge in A12 mit bekannten Sn–S-Abständen ist deshalb schwierig, weil A12 das Zinn in der formalen Oxidationsstufe Null enthält während andere metallorganische Sn–S-Derivate sich jeweils von Sn(II) ableiten. Der Sn–S-Abstand in A12 liegt in dem Bereich der für Sn(II)-Komplexe (z.B. A11 247.8(5)–251.3(3) pm; [({Cp*-(CO)₂MnSn}₃S₄)Na(THF)₃]⁻ [15,7*] 245.3(4)–257.9(3) pm, Mittelwert: 250.6 pm; [{Cp'(CO)₂Mn}Sn(C₂H₄S₂)-SCH₂]₂²⁻ [5,7*] 247.5(3)–248.4(3) pm) beobachtet wurde. Als Sn(0)–S-Abstand ist die in A12 gefundene Sn–S-Bindungslänge von 247.4(3) pm (Tabelle 2) daher kurz.

2.1. Schlußfolgerungen:

- Der Plumbacumulenkomplex [Cp'(CO)₂Mn=Pb=Mn (CO)₂Cp'] (1) reagiert mit SMes zu⁻ [{Cp'(CO)₂-Mn}Pb(SMes)₃]⁻ (A4), dem Produkt eines oxidativen Additionsprozesses. Als Zwischenstufe dieser Reaktion konnte die "Iniden"-Verbindung [{Cp'-(CO)₂Mn}₂Pb(SMes)]⁻ (A3) IR-spektroskopisch nachgewiesen werden.
- Bei der Umsetzung von S^tButyl⁻ mit dem Stannacumulenkomplex $[Cp'(CO)_2Mn=Sn=Mn(CO)_2Cp']$ (10) kann die anionische "Iniden"-Verbindung $[\{Cp'-(CO)_2Mn\}_2Sn(S^tButyl)]^-$ (A12) als (Li 2,1,1-Crypt.)-Salz 12 kristallin erhalten und röntgenstrukturanalytisch charakterisiert werden. Die Strukturanalyse belegt die π -Konjungation innerhalb des Systems Mn₂SnS dieses Komplexes.

3. Experimenteller Teil

3.1. Arbeitstechnik und verwendete Geräte

Sämtliche Arbeiten wurden in Schlenk-Arbeitstechnik unter Verwendung von frisch absolutierten und destillierten Lösungsmitteln in gereinigter Inertgasatmosphäre durchgeführt (N₂, Ar, H₂O-Entfernung durch Molekularsieb 3 Å der Firma Merck, O₂-Entfernung durch einen CuO Katalysator BTS der Firma BASF). Als Trockenmittel für die Lösungsmittel wurden benutzt: CaH₂: *n*-Pentan; Na: Et₂O, THF. Die verwendeten Säulenmaterialien (Kieselgel silanisiert 0.063-0.2 mm, Fa. Merck; Kieselgur, gereinigt, geglüht, Erg.B.6., Fa. Riedel de Haën AG) wurden am Hochvakuum bei *ca.* 10^{-2} mbar jeweils 3 Tage bei 20°C entgast und unter N₂ aufbewahrt.

IR-Spektren: Perkin Elmer 983 G (in THF Lösung). Bedeutung der Abkürzungen: vs = sehr stark, s = stark, m = mittel, sh = Schulter.

3.2. Umsetzung von $[Cp'(CO)_2Mn=Pb=Mn(CO)_2Cp']$ (1) mit NaSMes; Darstellung von (Na 2,2,2-Crypt.) $[\{Cp'(CO)_2Mn\}Pb(SMes)_3\}]$ (4)

Zu einer roten Lösung von 100 mg (0.17 mmol) 1 [2,4] in 40 ml THF gibt man 30 mg (0.15 mmol) NaSMes in 20 ml THF. Die rote Farbe vertieft sich augenblicklich. Im IR-Spektrum dieser Reaktionslösung beobachtet man das, gegenüber dem Spektrum der Ausgangsverbindung [2,13], bathochrom verschobene Dreibandenspektrum [5] der "Iniden"-Zwischenstufe $[{Cp'(CO)_2Mn}_2Pb(SMes)]^-$ (A3) [7*] (IR ν (CO) (cm⁻¹, THF): 1898s, 1880vs, 1837vs). Man läßt 48 h bei Raumtemperatur rühren, versetzt mit 64 mg (0.17 mmol) 2,2,2-Crypt. in 10 ml THF, filtriert über 3 cm Kieselgur/THF und engt die Lösung am Hochvakuum ein. Nach Ausfällen der ionischen Bestandteile mit *n*-Pentan löst man das erhaltene Pulver in THF, filtriert erneut und überschichtet die aufkonzentrierte, braunrote Lösung im Schlenkrohr (Ø = 1 cm) mit der dreifachen Menge Ether/Pentan/ Toluol. Ausbeute: 15 mg (0.012 mmol, kristallin, 7% bez. 1); IR ν (CO) (cm⁻¹, THF): 1908vs, 1845vs.

3.3. Darstellung von (Lithium 2,1,1-Crypt.)[$\{Cp'(CO)_2-Mn\}_2Sn(S'Butyl)\}$ (12)

3.3.1. Deprotonierung von Tertiärbutylmercaptan mit Butyllithium

0.04 ml (0.36 mmol) HS^tButyl werden in 20 ml THF bei -70° C mit 0.15 ml einer 2.5 molaren Lösung (0.37 mmol) von Butyllithium in Hexan versetzt. Die Deprotonierung von HS^tButyl zum Anion S^tButyl⁻ erfolgt, indem man die Reaktionsmischung auf Raumtemperatur erwärmen läßt.

202 mg (0.50 mmol) Na[{Cp'(CO)₂Mn}₂H] [12] werden in 50 ml THF bei -30° C vorgelegt. Dazu gibt man unter Rühren 100 mg (0.53 mmol) SnCl₂ wasserfrei in einer Portion fest zu. Nach 5 min entfernt man das Kühlbad und läßt auf 0°C auftauen. Die so erhaltene rotbraune Reaktionslösung wird unter Rühren im Eisbad gekühlt und mit einer Lösung von 0.36 mmol LiS^tButyl in 20 ml THF (Herstellung s.o.) versetzt. Es fällt augenblicklich ein schwarzer Niederschlag aus. Die Reaktionslösung wird mit 72 mg (0.25 mmol) 2,1,1-Crypt. in 20 ml THF versetzt und sofort über 3 cm Kieselgur/THF vom unlöslichen Rückstand abfiltriert. Die verbleibende orangerote Lösung wird am Hochvakuum in der Kälte auf *ca*. 15 ml eingeengt. Man teilt die Lösung in fünf gleiche Teile und überschichtet sie in Schlenkrohren ($\emptyset = 1$ cm) zuerst mit einem Teil Ether und darüber mit 3 Teilen Petrolether 40/60. Bei +4°C wachsen innerhalb von zwei Tagen orangeockerfarbene Nadeln und Blättchen. Ausbeute: 80 mg (0.09 mmol, kristallin, 18% bez. Na[{Cp'(CO)₂Mn}₂H]); IR ν (CO) (cm⁻¹, THF): 1907s, 1889vs, 1896s, 1877m(sh), 1844vs, 1829sh.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247) und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit.

Literatur und Bemerkungen

1 (a) G. Huttner und K. Evertz, Acc. Chem. Res., 19 (1986) 406; (b) G. Huttner, Pure Appl. Chem., 58 (1986) 585.

2 E = Pb, L_nM = Cp'(CO)₂Mn:
 F. Ettel, G. Huttner und L. Zsolnai, Angew. Chem., 101 (1989) 1525; Angew. Chem. Int. Edn. Engl., 28 (1989) 1496.

- 3 E = As, $L_n M = Cp'(CO)_2 Mn$: C. Emmerich und G. Huttner, J. Organomet. Chem., 447 (1993) 81.
- $4 E = Pb, L_n M = Cp(CO)_2 Mn:$

(a) W.A. Herrmann, H.-J. Kneuper und E. Herdtweck, Chem. Ber., 122 (1989) 445; (b) W.A. Hermann, H.-J. Kneuper und E. Herdtweck, Angew. Chem., 97 (1985) 1060; Angew. Chem. Int. Edn. Engl., 24 (1985) 1062.

- 5 E = Sn, $L_n M = Cp'(CO)_2 Mn$: F. Ettel, G. Huttner, L. Zsolnai und C. Emmerich, J. Organomet. Chem., 414 (1991) 71.
- 6 E = Sb, $L_n M = Cp'(CO)_2 Mn$:

A. Lombard, G. Huttner und K. Evertz, J. Organomet. Chem., 350 (1988) 243.

- 7 * In den salzartigen Verbindungen, z.B. (Li 2,1,1-Crypt.) [{Cp' (CO)₂Mn}₂Pb(S'Butyl)] (2), werden die anionischen Teile jeweils mit der Ergänzung A bezeichnet, d.h. [{Cp'(CO)₂Mn}₂Pb (S'Butyl)]⁻ entspricht A2. 2,1,1-Crypt. = $C_{14}H_{28}N_2O_4$; 2,2,2-Crypt. = $C_{18}H_{36}N_2O_6$.
- 8 * Eine der besten Methoden zur Isolierung der extrem Luft- und Feuchtigkeits-empfindlichen Komplexsalze ist ihre direkte Kristallisation aus dem Reaktionsgemisch. Bei der oft langen Kristallisationszeit können die Produkte jedoch zu thermodynamisch stabileren Verbindungen weiterreagieren.
- 9 * Röntgenstrukturanalyse: Messung auf Siemens (Nicolet Syntex) R3m/Vierkreisdiffraktometer, Mo-K α -Strahlung, Graphitmonochromator, Lösung und Verfeinerung sHELXTL PLUS (G.M. Sheldrick, Universität Göttingen, 1988). Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gessellschaft für wissenschaftlich-technische Information mbH, 76344 Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-F57825, der Autoren sowie des Zeitschriftenzitats angefordert werden.

4: Toluol: Monoklin; Raumgruppe P_{2_1}/c (Nr. 14); a = 1953.0(4)pm, b = 1281.2(3) pm, c = 2560.4(5) pm; $\beta = 99.79(2)^\circ$; $V = 6315 \times 10^6$ pm³; Z = 4; T = 293 K; 20-Bereich $2.0 \le 20 \le 48.0^\circ$; scan-Geschwindigkeit (°min⁻¹) $2.1 \le \omega \le 29.3$; 9972 unabhängige Reflexe, 5075 beobachtete Reflexe ($l \ge 2\sigma$); 604 verfeinerte Parameter; $R_1 = 9.4$, $R_w = 7.3\%$.

12: Triklin; Raumgruppe $P\overline{1}$ (Nr. 2); a = 1164.7(8) pm, b = 1205.6(5) pm, c = 1533(1) pm; $\alpha = 83.30(6)^{\circ}$, $\beta = 67.96(7)^{\circ}$, $\gamma = 71.83(4)^{\circ}$; $V = 1896 \times 10^{6}$ pm³; Z = 2; T = 210 K; 2 Θ -Bereich $2.0 \le 2\Theta \le 48.0^{\circ}$; scan-Geschwindigkeit (° min⁻¹) $2.5 \le 2\omega$ $0 \le 29.3$; 5940 unabhängige Reflexe, 5310 beobachtete Reflexe ($l \ge 2\sigma$); 428 verfeinerte Parameter; $R_1 = 3.6$, $R_w = 3.6\%$.

- 10 (a) H. Iwasaki und H. Hagihara, Acta Cryst., B, 28 (1972) 507;
 (b) T. Ito und Acta Cryst., B, 28 (1972) 1034;
 (c) H. Iwasaki, Acta Cryst., B, 36 (1980) 2138;
 (d) M. Ito und H. Iwasaki, Acta. Cryst., B, 36 (1980) 443.
- 11 E = Sn, $L_n M = Cp^*(CO)_2 Mn$: W.A. Herrmann, H.-J. Kneuper und E. Herdtweck, *Chem. Ber.*, 122 (1989) 437.
- 12 (a) P. Oltmanns und D. Rehder, J. Organomet. Chem., 345 (1988)
 87; (b) K. Plößl, G. Huttner und L. Zsolnai, Angew. Chem., 101 (1989) 482; Angew. Chem. Int. Edn. Engl., 28 (1989) 446.
- 13 E = Ge, Sn, Pb; $L_n M = Cp'(CO)_2 Mn$: F. Ettel, G. Huttner und W. Imhof, J. Organomet. Chem., 397 (1990) 299.
- 14 * Die Elementarzelle von A11 enthält zwei unabhängige Formeleinheiten.
- 15 B. Schiemenez, F. Ettel, G. Huttner und L. Zsolnai, J. Organomet. Chem., 458 (1993) 159.